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LETER TO THE EDITOR 

Storing an extensive number of grey-toned patterns in a neural 
network using multistate neurons 

H Rieger 
Institut Wr Theoretische Physik, Universitat zu Koln, Ziilpicher Strasse 77, D-5000 Koln 
41, Federal Republic of Germany 

Received 10 September 1990 

Abstract. Grey-toned patterns are pictures composed of pixels of several shades of grey. 
The ability of neural networks using multistate neurons to store such patterns is systemati- 
cally investigated. If conventional generalizations of Hopfield networks using analogue or 
soft neurons are considered, it is impossible to stabilize these grey tones. Nevertheless it 
is shown that it can be done with networks that use neurons which have only a discrete 
set of possible activities. This is demonstrated for the pseudo-inverse rule for the synaptic 
couplings, where only the stability of the patterns shrinks with increasing number Q of 
grey tones one wants to store. If the patterns are uncorrelated one can use the Hebb rule 
and in this case the mean field theory is presented. Applying this rule the storage capacity 
decreases as Q-2 with the number of grey tones. 

The original Little-Hopfield model of neural networks [ 1,2] consists of neurons that 
can take on two different states corresponding to ‘firing’ and not firing’. With appropriate 
synaptic couplings the network is able to memorize patterns, i.e. some prescribed 
configurations of the neuronal activities act as attractors within the dynamical evolution 
of the network [2,3]. If one transposes these configurations into a two-dimensional 
picture, the two-valued neuronal activities correspond to black and white pixels. In 
this sense the Hopfield net is able to retrieve black/white pictures. The impression of 
more light or more darkness within certain regions of the picture can only be achieved 
by manipulating the density of black pixels on a white background. 

Now, in a very natural way, the question arises as to whether one is able to store 
pictures composed of pixels of various shades of grey in a network that consists of 
neurons with graded response (the interest in this problem is of course not limited to 
vision). Neural networks using such neurons-first considered in [4]-were investigated 
very recently by several authors [5-111. The main problem arising in this context is 
that for soft neurons, i.e. neurons with a continuous IO relation, the intermediate 
activities (corresponding to grey tones) are hard to stabilize, as we shall see below. 
One can circumvent this problem by a more abstract model, which deals only with 
continuously varying order parameters and suitable potentials [ 121, but then the neurons 
and their dynamics are missing, which is not advantageous, e.g. for hardware 
implementations. 

The aim of this letter is to investigate systematically the ability of neural networks 
using multistate neurons to store patterns, where the individual neuronal activities take 
on several values between -1 and +1 (corresponding to black and white). Here only 
results are given, the derivation of formulae and a more detailed analysis in connection 
with computer simulations can be found in a forthcoming publication [ 131. 
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Multistate neurons are characterized by an IO relation gi( h i )  that prescribes for 
each value of the postsynaptic potential (or local field) hi the corresponding output 
value (or activity) ui = gi(hi), which can be interpreted in terms of firing rates (after 
the transformation to Si = (1 + ai)/2).  The local field is as usual defined to be 

The neurons are updated in a random-sequential way. When the ith neuron is updated 
the actual local field hi causes the new activity U, to be 

= gi( hi). (2) 

In the presence of noise there is a non-vanishing probability to take on other activities 
than prescribed by (2). In this case one has to consider transition probabilities instead 
of the update rule (2). Let us first concentrate on the noiseless case. 

Certain configurations of the neuronal activities f "  = ( f y ,  . . . , eh), v = 
1,. . . , p-called patterns-should be fixed points of the dynamics (2) with as large as 
possible a basin of attraction. Therefore it is required that 

This can be achieved by an appropriate choice of the synaptic couplings Jv.  The IO 
function should be subjective (otherwise cancel all activities ai that do not correspond 
to any local field), hence it is possible to choose 7 7 ;  with g i (Tr)=f r .  For linear 
independent patterns the pseudo inverse can be applied [ 141 

where C,, = (1/ N) BE, [ f [ y  is the correlation matrix of the patterns. 
Already at this stage one observes that it seems to be impossible to provide the 

patterns in a network using a broad class of smooth IO functions (e.g. tanh(gh), 
erf(gh), piecewise linear, etc) with sufficient stability. If gj(7;) is of order one, a small 
change in the neuronal activities will not be damped out by the update rule (2) and 
in the presence of noise the patterns are expected to be unstable. This becomes more 
vivid if we concentrate now on a special class of IO functions, which arises in a natural 
way doing statistical mechanics with networks of multistate neurons and symmetric 
couplings [ 51. 

Consider the Hamiltonian 

introduced in [15] in the context of S-Ising spin glasses. The activities ui vary either 
continuously within the interval [amin, amax] or take on discrete values a', . . . , uQ. 
Transition probabilities leading to the canonical probability distribution P( a) CC e-BH 
are given by 

,/3( h , 6 - G 2 / 2 )  

p = 1/ T (inverse temperature). ( 6 )  w ( a p e W =  6) = T~~ eB(h,+62/2)  

In the noiseless case one gets an IO function, which is piecewise linear for continuously 
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varying ai : 

and composed by step functions in the case of discrete a: 

g( hi)  = U: for h i E [ U k - l ,  U,[, k = l ,  . . . , Q  (8) 

with U, = -CY), U, = +OO and 
Following [14] one can define the Euclidean distance between the actual 

network configuration U and the subspace spanned by the patterns A =  
dist(a, spann{&’, . . . , f ” } )  and a simple calculation leads in the case of the couplings 
(4) (with 7 ;  = 6; )  to H = A*. Thus for continuously varying activities all linear combina- 
tions of the patterns within the cubus [amin, a,nax]N are degenerate in energy and the 
network is not usable for associative memory or pattern recognition. The situation is 
even worse in the presence of noise. 

The only way out is discrete output values (or IO functions with plateaux at certain 
field values). This is due to the fact that in this case the probability that spann{f’, . . . , 5”) 
contains a vector with components equal to one of the possible activities U’, . . . , uQ 
vanishes for N +CO. This was proven in [14] for (*1)  neurons and holds also for each 
finite Q. Nevertheless other spurious states occur with increasing Q, different from 
linear combinations of the patterns and thus higher in energy, but also metastable. 
Therefore the performance of the network should be checked more quantitatively, 
which will be done below. 

The mean-field theory of the neural network using Q-state neurons, described by 
the Hamiltonian ( 5 )  and the couplings (4) is analogous to that of (*1) neurons [14] 
and yields-as one would expect-a, = 1 for the critical storage capacity a = p /  N, but 
of course, due to the new spurious states mentioned above, another temperature 
dependence. The advantage of the learning rule (4) lays in its ability to store also 
correlated patterns, its disadvantage is the fact that it is non-local. 

In the case of uncorrelated random patterns we have approximately C,, = C6,,, 
with C =((e’)). Within this approximation the equation (4) becomes the well known 
Hebb rule 

= (ak + uk+’)/2 for k = I , .  . . , Q - 1. 

The calculation of the free energy per neuron 

1 
p N + a 2 N  

f=-- 1’ im -((In Tr, e-BH))f 

is now standard [3] and yields (for an even distribution of 6 )  within the replica 
symmetric approximation 
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with h, =fi z + ( l / C )  8, m[”, 2 f i  = 1 - ax/(l -x), where x =/?(Xu- 4). The meaning 
of the order parameters is the following: X = (((a’))) is the mean square of the neuronal 
activities, q =(((a)’)) is the EA-order parameter, r = (((m)2)) is the mean square of 
the random overlaps of the non-condensed patterns 6” with the configuration of 
the network, 2 = (((m’))) is the mean correlation between the local activities af and 
the pattern activity ([t)’ of the non-condensed patterns and m y  = ((([”(r))) is the overlap 
of the network configuration with a condensed pattern 6”. The replica symmetry is 
broken below the generalized AT line, where the replicon eigenvalue 

becomes negative. 
Although the overlap m” is the quantity that decides whether there are correlations 

between the state of the network and the pattern tu, one is also interested in the amount 
of correct and incorrect activities: a” = (1/N) Xi”=, Si,p;. Since a and [ can take on 
only Q different values it is possible to represent the Kronecker symbol as a 
polynomial (here ar means the rth power of the variable a, the same for 6”) :  

r ,s=O 

where the Q’ coefficients A,, have to be determined by solving the linear system of 
equations that is obtained by inserting all possible values for U and [ into equation 
(13).  For example in the case of Q = 3  and a,[~{--l,O,+l} one gets Sus,= 
1 - a2 - t2 + 406 + !a2[’. Thus, once the order parameters are known, the quantity a ” 
can be calculated via 

Of special interest are the critical storage capacities a for vanishing temperature 
up to which retrieval states m y  = ma,, ,  with m # 0 exist. For T = 0 the self-consistency 
equations for the order parameters read: 

where p I  = prob{&‘= a’} and f i k  = fi(ak + ak+l). Note that q = X for T = 0 and r = 
4(1 

Suppose that the neurons have equidistant activities uk = -1  + 2( k - 1 ) / (  Q - 1) .  If 
no information about the patterns is available it seems to be most adequate to assume 
p I  = 1/  Q, that means each grey tone is equally probable. If the patterns have a greater 
number of grey tones than Q and one is only interested in an information content of 
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In Q per pixel, one has to map the superficial grey tfnes onto the possible activities. 
Otherwise another network has to be used (with Q-state neurons, where 0 is the 
number of grey tones). Hence, in what follows the distribution of patterns is given by 

1 0  
Q k = l  

P ( ( ) = -  8 ( f - a k ) .  

Solving the equations (15) one gets the critical storage capacities as depicted in 
figure 1. This fits rather nicely with 

a,( Q) = 0.3Q-* for Q >> 1.  (17) 

These are the results for the replica-symmetric theory, but although at zero temperature 
the replica-symmetry is broken (see (12)), the effects are extremely weak, for Q = 3  
already one order of magnitude smaller than in the two-state case and decreasing with 
increasing Q. The phase transition at a, is of first order, where m jumps from a value 
that deviates from C=((f2)) less than 1% (for Q > 2 )  discontinuously to zero. As 
mentioned above one can calculate the relative number of neurons that are wrong and 
gets less than 0.3%. 

Figure 1. The critical storage capacity aC for different values of Q (at zero temperature) 
within a log-log plot. The dots are results obtained by solving the equations (15), the 
broken line is the fit mentioned in the text. 

Let us have a closer look at the full phase diagram of the three-state net (i.e. 
uk = -1, 0, +1, compare with [6,7]), which is depicted in figure 2. The most remarkable 
difference to the two-state net (see [3]) is (i) the much lower storage capacity a, = 0.047 
and (ii) the paramagnetic phase (m = 0, q = 0) between the retrieval phase (m > 0) and 
the spin glass phase (m = 0, q > 0). This is due to the presence of the zero state (ai = 0) 
in connection with the second term X i  af in the Hamiltonian ( 5 ) ,  which punishes high 
activities. Only if the variance a of the random couplings Ju is strong enough does 
the first term describing the interaction between the neurons become dominant and 
provides spin-glass behaviour. The fact that this paramagnetic phase, where the neurons 
have a great probability to be in the zero state, is neighbouring the retrieval phase has 
many advantages for practical purposes, as was detected in [6]. This feature is of 
course present in all networks using Q-state neurons, where Q is an odd number. The 
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Figure 2. The phase diagram for the three-state network. From top to bottom there is the 
spin glass phase ( m  = 0, 9 > 0) ,  the paramagnetic phase ( m  = 0, 9 = 0) and the retrieval 
phase ( m  > 0). On the left side at T = 0 the paramagnetic phase is bordered by the zero-state 
X= 0. The AT line cannot be seen within the retrieval zone on this scale. 

line a,(T) below which retrieval states exist, has the same shape as in the two-state 
net [3], the AT line, below which replica-symmetry breaking occurs, cannot be seen 
within the scale of figure 2. 

For higher values of Q the phase diagram looks qualitatively the same, but the 
retrieval zone shrinks for increasing Q. Within this zone different retrieval phases occur, 
with different degrees of correlation between the network configurations and the 
patterns, which are all metastable (see [ 131). It depends on the initial amount of correct 
neurons in which phase the network is in equilibrium. 

In this letter it has been shown that pattern recognition of grey-toned patterns is 
possible in a neutral network that uses neurons with a discrete set of activities. Using 
the pseudo inverse one can store N patterns in a network with N neurons, but the 
basin of attractions for retrieval without error shrink with the number of grey tones 
one wants to store. Even with the conventional Hebb rule it is possible to store 
uncorrelated grey-toned patterns, but for this rule the storage capacity decreases as 
Q-' with Q. It would be interesting to calculate the maximal storage capacity of these 
networks (for optimal couplings) as was done for the two-state case in [16] and to 
ascertain whether the result a,,, = 2 for Q = 2 holds also for higher Q. 

The author thanks M Schreckenberg for carefully reading the manuscript. This work 
was performed within the research program of the Sonderforschungsbereich 341 
Koln- Aachen-Julich supported by the Deutsche Forschungsgemeinschaft. 
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